REGULAR *p*-GROUPS AND WORDS GIVING RISE TO COMMUTATIVE GROUP OPERATIONS

ΒY

J. R. J. GROVES

ABSTRACT

Groups with words which give rise to commutative operations are considered. Finite p-groups with this property are shown to be regular. It is also shown that finite p-groups of class less than p, among other groups, have this property.

If G is a group, we may define a binary operation * on G by

$$x * y = v(x, y)$$

where v is some fixed word in x and y. If the elements of G, together with the operation *, define a group, then we say that v is a group-word for G and write the corresponding group G_{v} .

A number of authors have considered the existence of group-words for groups, or classes of groups, and the relationship between G and G_v (see, for example, Higman and Neumann [2], Hulanicki and Świerczkowski [3] and Street [6]). In this note, we shall be interested in the problem, raised by Cooper [1], of when a group G possesses a group-word v for which G_v is abelian; following Cooper, we say that G is then verbally abelian. Much of the interest of verbally abelian groups lies in their connection with regular p-groups.

THEOREM 1. Let G be a finite p-group. There is a group-word v for which G_v is regular if and only if G is regular.

In particular, G is verbally abelian only if G and all its direct powers are regular (that is, G is V-regular in the sense of Weichsel [7]). We observe that V-regularity, rather than regularity, is appropriate here because direct powers of verbally abelian groups are again verbally abelian. This answers a question of Cooper in [1].

It remains to decide which V-regular groups are verbally abelian. We prove that at least those of "small" class are.

Received June 10, 1975

THEOREM 2. Suppose that G is a nilpotent group of class c and that the derived group of G has finite exponent n, where every prime divisor of n is greater than c. Then G is verbally abelian.

(Note that this contradicts an example of a non-verbally-abelian group of small class claimed by Cooper in [1].)

The theorem is deduced from the following, apparently more general, lemma. If G is a group, let $\Lambda_n(G)$ denote the subgroup generated by all elements of order dividing n and $M_n(G)$ the subgroup generated by all nth powers of elements of G; let G' denote the derived group of G.

LEMMA. Let F be a nilpotent group with a law

 $x_{1}^{n}x_{2}^{n} = (x_{1}x_{2}w(x_{1}, x_{2}))^{n}$

where w is a commutator word. Then $F/\Lambda_n(F')M_n(F')$ is verbally abelian.

We deduce Theorem 2 from this lemma by observing that the free nilpotent group of class c has such a law if every prime divisor of n is greater than c and that groups of the type described in Theorem 2 can be expressed as suitable quotients of these free nilpotent groups.

It is of interest to speculate about V-regular p-groups which are not of small class. Are they expressible as suitable quotients as required by the lemma? Are they even expressible as quotients of torsion-free groups which have a law of the required kind? If all V-regular groups are not verbally abelian, where is the dividing line? Theorem 2 suggests that this dividing line and the dividing lines for verbally-class-k groups or verbally-small-class groups may hopefully give partitions of the V-regular groups which are of some interest.

For basic results concerning regular groups, we refer to Huppert [4, III]. A section of a group is a homomorphic image of a subgroup.

PROOF OF THEOREM 1. If G is regular, there is nothing to prove. Suppose, then, that G is irregular and that G has a group-word v such that G_v is regular. Then G has a minimal irregular section H and clearly v is still a group-word for H and H_v is still regular.

It is straightforward to show that v is equivalent in H to a word

$$x_1 x_2 w(x_1, x_2)$$

where $w(x_1, x_2)$ is a commutator word in x_1 and x_2 . Now, since H_v is regular, for all $x, y \in H_v$

$$(x * y)^{*p} = (x^{*p}) * (y^{*p}) * d_{*}^{*p}$$

where * is the derived operation and x^{*p} denotes the *p*th power of *x* under this operation and d_* is a product of *-commutator words in *x* and *y*.

Now $x^{*p} = x^p$ and every *-commutator lies in H' (by a straightforward calculation). Hence, for $x, y \in H$,

$$(x*y)^p = x^p * y^p * d_*^p$$

But, M is a minimal irregular group and so, by theorem 2(b) of Mann [5], $d_*^{p} = 1$. Hence

$$(xyw(x, y))^{p} = x^{p}y^{p}w(x^{p}, y^{p}).$$

But, by theorem 2(k) of Mann [5], $(xyw(x, y))^p = (xy)^p$ and $w(x^p, y^p) = 1$. Hence, for all $x, y \in H$,

$$(xy)^p = x^p y^p$$

and H is regular. This contradiction completes the proof of the theorem.

PROOF OF THE LEMMA. Although the lemma and Theorem 2 are based on considerations of finite *p*-groups, we have stated them in a more general form. We therefore list some consequences of the law $x_1^n x_2^n = (x_1 x_2 d(x_1, x_2))^n$ which can be proved in a manner similar to the analogous results for regular *p*-groups (see Huppert [5, III]):

1) $\Lambda_n(F)$ consists of elements of order dividing n;

2) $M_n(F)$ consists of *n*th powers;

3) if $a, b \in F$ and $a^n = b^n$, then $(ab^{-1})^n = 1$;

4) if $a, b \in F$, then there exists $c \in F'$ such that $[a^n, b^n] = c^{n^2}$.

Let x, y, z be elements of F. Define an operation * on F by

$$a * b = abw(a, b)$$

where $a, b \in F$ and w is the commutator word given in the statement of the lemma. Then

$$x^{n}y^{n}z^{n} = \begin{cases} (x^{n}y^{n})z^{n} = (x * y)^{n}z^{n} = ((x * y) * z)^{n} \\ x^{n}(y^{n}z^{n}) = x^{n}(y * z)^{n} = (x * (y * z))^{n}. \end{cases}$$

Hence $((x * y) * z)^n = (x * (y * z))^n$ and so, by (3) above,

$$(x * y) * z = x * (y * z) \cdot a$$

where $a \in \Lambda_n(F')$. Thus * induces an associative operation on $F/\Lambda_n(F')$ and so on $F/\Lambda_n(F')M_n(F')$. That this operation in fact turns $F/\Lambda_n(F')M_n(F')$ into a group is now straightforward to check.

Now,

$$(x * y)^n = x^n y^n, \qquad (y * x)^n = y^n x^n$$

and so

$$(y * x)^{-n} (x * y)^{n} = [x^{n}, y^{n}] = d^{n^{2}}$$

for some $d \in F'$ (by (4) above). Hence

 $(y * x)^{-n} (x * y)^n \in M_{n^2}(F')$

and so, by (a) and (3) above,

$$((y * x)^{-1}(x * y))^n = e^{n^2} \qquad (e \in F').$$

Hence, by (3),

$$(e^{-n}(y * x)^{-1}(x * y))^n = 1$$

Thus

$$(y * x)^{-1}(x * y) \in \Lambda_n(F') \mathcal{M}_n(F')$$

and so * induces a commutative group operation on $F/\Lambda_n(F')M_n(F')$. Hence $F/\Lambda_n(F')M_n(F')$ is verbally abelian, as required.

PROOF OF THEOREM 2. Let N be the free nilpotent group of class c and of rank the cardinality of a generating set of G. Since every prime divisor of n is greater than c, it follows from the Hall commutator collecting process (Huppert [5, III, 9]) that N has a law

$$(x_1x_2)^n = x_1^n x_2^n d_1^n \cdots d_k^n$$

where d_1, \dots, d_k are commutator words. It is straightforward to deduce that N has a law

$$x_{1}^{n}x_{2}^{n} = (x_{1}x_{2}w(x_{1}, x_{2}))^{n}$$

where w is a commutator word.

Thus the lemma applies to N. Since N is torsion-free, $\Lambda_n(N') = \{1\}$ and so N/M_n is verbally abelian. But, since G has class c and G' has exponent n, G is a homomorphic image of $N/M_n(N')$. Thus G is verbally abelian.

REFERENCES

1. C. D. H. Cooper, Words which give rise to another group operation for a given group, in Proc Internat. Conf. Theory of Groups (Canberra 1965), 221-225. (Lecture Notes in Mathematics, No. 372 Springer-Verlag, Berlin, Heidelberg and New York, 1974.)

76

2. G. Higman and B. H. Neumann, Groups as groupoids with one law, Publ. Math. Debrecen 2 (1951-2), 215-221.

3. A. Hulanicki and S. Świerczkowski, On group operations other than xy or yx, Publ. Math. Debrecen 9 (1962), 142-148.

4. B. Huppert, Endliche Gruppen I, in Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 37, Springer-Verlag, Berlin, Heidelberg and New York, 1967.

5. Avinoam Mann, Regular p-groups, Israel J. Math. 10 (1971), 471-477.

6. Anne Penfold Street, Subgroup determining functions on groups, Illinois J. Math. 12 (1968), 99-120.

7. Paul M. Weichsel, Regular p-groups and varieties, Math. Z. 95 (1967), 223-231.

MATHEMATICS DEPARTMENT

UNIVERSITY OF MELBOURNE

PARKVILLE, VICTORIA 3052, AUSTRALIA